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Summary: An optically active total synthesis of calphostin 
D (la) through dimerization of the chiral o-naphtho- 
quinone 6 has been accomplished. The mechanism of the 
dimerization has been shown to be an acid-catalyzed 
process. 

Current synthetic interest in the perylenequinone 
calphostin D (la) stems from the discovery that the 
naturally occurring derivatives lb-d are potent inhibitors 
of protein kinase-C,l an enzyme that controls cell division 
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R' = COPh. 

of this activity, these 
as anticancer and anti- 

and differentiation.2 Because 
materials are Dotentiallv useful 
HIV agents.3 Moreover,"the structurally similar naturally 
occurring perylenequinones, phleichrome and cercosporin,4 
are known to photosensitize the production of singlet 
oxygen; therefore, calphostins are also potentially useful 
as phototherapeutic agents for the treatment of various 
cancers.6 

We have achieved a practical optically active total 
synthesise of calphostin D (la) and isocalphostin D.4J 
Notable aspects of this route are the brevity of the synthetic 
plan, the high yields, and the fact that none of the steps 
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7a R' = CH3, R2 = 

l a  R 1 =  R 3 = H , R 2 = C H 3 2  ' 
"Reagents and conditione: (a) LAH, THF; 91%; (b) SO&, 

DMSO; 82%; (c) AczO, Py, DMAP (at.); 96%; (d) CHsCH&TOz, 
N-methylmorpholine, 18-crown-6, KF; 75 %; (e) CrCla, THF-H2O; 
72%; (f) LAH, THF; 92%; (9) lipase Pseudomonas fluorescenu, 

SeO)zO, THF; 95% ; (i) TFA then (CFaCO&T1; 91 % ; 6) BQN+P, 
CHd, DMF, 76%; (k) MgIpEhO, PhH 45%; (1) K2COrMeOH. 

7b R' = R2 = CHs, R3 = AC kG 7c R' = H, R2 

C H ~ C O ~ C H ~ H Z ,  DIPE 42% of Sb and 58% of WSb; (h) (Ph- 

required low temperatures. Key transformations were as 
follows: the use of an enzymatic procedure for resolution 
of the racemic alcohol 5a; conversion of the antipodal 
alcohol 6c to the desired isomer 5b, thereby permitting 
efficient utilization ' of both enantiomers; high yield 
dimerization of the naphthoquinone 6 to the perylene- 
quinone 7a; and regiospecific demethylation of a peri- 
methoxyl in the presence of an 0-methoxyl group (7b to 
7c). 

The readily available naphthoate 2a8 was straightfor- 
wardly converted to the acetylated aldehyde 2d (mp 144- 

(8) Cameron, D. W.; Feutrill, G. I.; Pannan, L. J. H. A u t .  J. Chem. 
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145 OC) through sequential reduction (LAH; 91%), 
oxidation @OS-Py, DMSO; 82% ), and acetylation [AczO, 
Py, DMAP (cat.); 96%1. In order to construct the 
hydroxypropyl side chain, 2d was condensed with nitro- 
ethane (N-methylmorpholine, 18-crown-6, KF then Ac2O; 
75%): and the resultant nitroalkene 3 (mp 144-146 OC) 
was reduced with CrC12'0 (72%) to afford the ketone 4. 
Reduction (LAH; 92% ) of 4 gave the racemic alcohol 5a 
(mp 109-110 OC), which was resolved through enzyme- 
catalyzed acylation (lipase Pseudomonus fluorescem, 
DIPE, CHgCO&H=CH&l affording the optically pure 
acetate 5b 142 % ; >99 % ee; = -2.08' (c 2.41, CH2- 
Clz)] and the enriched enantiomeric alcohol Sc (58% ; 72 % 
ee).12J3 Mitsunobu reaction (DEAD, Ph3P, p-ClPhCOZH; 
63%), hydrolysis (KzC03, MeOH-HzO; 100%) of the 
resultant benzoate ester to the alcohol, and then enzyme- 
catalyzed acylation were used to convert the undesired 
antipodal alcohol 5c to the desired acetate 5b. In so doing, 
70% of the initial racemic alcohol 5a was converted to a 
single enantiomeric product, the acetate 5b. Oxidation of 
5b [ (PhSe0)20, THF; 95% 3 la gave the o-naphthoquinone 
6 [mp 135-136 'c; [CYI2'D = -14.9' (c 9.45, CHzC12)I. 

Chao and Zhaneb and Diwu and Lownsc have reported 
the use of FeC13 in CH&N to effect oxidative dimerization 
of o-naphthoquinones similar to 6 to perylenequinones. 
Under these conditions, we obtained only trace quantities 
of the desired perylenequinone 7a and modest yields (20- 
30%) of the binaphthoquinone 8. Ultimately, we dis- 
covered that an oxidizing agent was not required for the 
dimerization process (vide infra). Simply treating 6 with 
TFA directly furnished a 1:l mixture of the perylene- 
quinone 7a and the hydroquinone 9. By slowly adding 
(CF&02)3T116 to reoxidize hydroquinone 9 to the o- 
naphthoquinone 6, we were able to obtain yields of 7a and 
ita diastereoisomer16 as an approximately 1:l mixture, in 
91% yield. 
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diastereoisomer were not 
separated" but directly methylated (ByN+P, CH31, 
DMF; 75 % )la furnishing 7b. Regiospecific demethylation 
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was based on reports that perylenequinone natural products readily 
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demethylation step requires heating, there was the potential for isomer- 
ization. 
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of the peri-methoxyl group in 7b in the presence of the 
o-methoxyl group was straightforwardly accomplished 
using MgIrEh0 (PhH, 50 'C; 45%)l9 and gave 7c. 
Ultimately, 7c and ita diastereoisomer were separated using 
a reversed-phase silica gel column (RP-18; MeOH-H20, 
3:1Ia2O Methanolysis (K2COJCHaOH) of 7c afforded pure 
calphostin D (la) which was identical in all respects (TLC, 
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IR, and NMR) to an authentic sample. The CD spectrum 
of la was identical with reported literature values.lp21 

The dimerization of 6 to the perylenequinone 7a war- 
rants additional comment. Our difficulty in obtaining 
the perylenequinone 7a from 6, using the FeCb-CH&N 
procedure led us to question the radical cation mechanism 
that had been proposed for this reaction. While electron- 
rich systems undergo radical cation dimerization, electron 
poor aromatic systems do not.22*2S Since o-naphthoquino- 
ne8 such as 6 are electron poor, due to the presence of the 
ortho-quinone fragment, it struck us as improbable that 
the dimerization reaction was a radical cation process. 

This rationale coupled with our observation that some 
of the desired product 7a was obtained from reaction of 
6 with FeCl3 suggested that a different mechanism might 
be responsible for the dimerization. A simple assumption, 
that this was an acid-catalyzed process, led us to outline 
the reaction sequence shown in Scheme 2. On the basis 
of this hypothesis, it seemed reasonable that, minimally, 
dimerization of 6 to 11 was possible. A subsequent acid- 
catalyzed reaction would effect intramolecular ring closure 
to give 14. Finally, oxidation of the hydroperylenequinone 
14 by unreacted o-naphthoquinone 6 would provide 7a. 
The postulated mechanism is supported by our observation 
that a 1:l ratio of the perylenequinone 7a and the 
hydronaphthoquinone 9 is obtained when 6 is treatedwith 
TFA,% in the absence of any other oxidant. 

On the basis of the above observation, it was logical that 
the reaction could be driven to completion by the addition 
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of an oxidant that would convert the o-hydronaphtho- 
quinone 9 back to the o-naphthoquinone 6, which ulti- 
mately dimerizes to perylenequinone 7a. Indeed, slow 
addition of a TFA solution of an oxidizing agent [0.5 equiv 
of (CF&O&Tl, FeCb, or NaIOr, based on 61 to thereaction 
routinely furnished 70-91 % yields of 7a. 

Another experimental finding that was pertinent to the 
proposed mechanism was that slow addition of 6 to a 
solution of (CF&02)3Tl(O.5 equiv) in TFA gave exclusively 
the binaphthoquinone 8. Under these conditions, where 
the oxidant is always in excess, the intermediate 11 is 
effectively trapped; oxidation of 11 to 8 is much more 
rapid than the second acid-catalyzed cyclization, which 
strongly suggests that the second intramolecular ring 
closure is also not an oxidative process. 

These findings demonstrate that the mechanism of 
dimerization of the o-naphthoquinone 6 to perylene- 
quinone 7a is an acid-catalyzed condensation and not an 
oxidative (radical cation) dimerization process. We expect 
that this finding wilt be widely useful for the synthesis of 
perylenequinones and related natural products. 
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